En una nota anterior [A119] vimos una manera de utilizar los 22 tipos de ejercicios resueltos de MRUV. En esa oportunidad identificábamos las incógnitas de una problemática que debíamos analizar y buscábamos en el listado de ejercicios resueltos la coincidencia de las incógnitas y de la valoración de las velocidades, de esta manera encontrábamos un ejercicio que se resolvía de manera análoga al que nos había tocado en suerte.
Ahora vamos a ordenar los mismos ejercicios tipo según la complejidad de su análisis y resolución, clasificándolos en función del sistema de ecuaciones que se debe utilizar.
Incógnita Velocidades Ejercicios
a) Ejercicios que se resuelven con un sistema de 2 ecuaciones
independientes. Cada una de las ecuaciones tiene una sola incógnita.
¿X;V?
V0=0;V≠0 [X101] Buscando un
familiar con un Tesla
¿X;V? V0≠0;V≠0 [X114] Maniobra brusca del camión
b) Ejercicios que se resuelven con un sistema de 2 ecuaciones relacionadas.
Una ecuación tiene una incógnita y la otra 2 incógnitas, siendo una de éstas la
misma que la de la otra ecuación.
¿X;V0? V0≠0;V=0 [X102]
Test de frenado para una moto
¿X;V0? V0≠0;V≠0 [X115]
Sobrepaso en la ruta
¿X;a?
V0=0;V≠0
[B257]
Lancha saliendo del muelle
¿X;a?
V0≠0;V=0 [X103]
Parada de colectivo
¿X;a?
V0≠0;V≠0 [X104]
Taxi buscando cliente
¿V;a?
V0=0;V≠0 [T016]
Despegue de un Airbus A320
¿V;a?
V0≠0;V≠0 [X116]
Aterrizaje del Cessna CJ4
¿X;t?
V0=0;V≠0 [X106]
Salida de bomberos
¿X;t?
V0≠0;V=0 [X107]
Tren llegando al andén
¿X;t?
V0≠0;V≠0 [X108]
Tractor cruzando una ruta
¿V;t?
V0=0;V≠0 [X109]
Mandame 3 pizzas
¿V0;V? V0≠0;V≠0 [X124] Probando un cuatriciclo
c) Ejercicios que se resuelven con un sistema de 2 ecuaciones con
2 incógnitas. Se puede resolver con cualquier método conocido, nosotros
generalmente aplicamos el método de sustitución.
¿V0;a?
V0≠0;V=0 [X105] Llegaron los
materiales
¿V0;a?
V0≠0;V≠0 [X117] Micro
alcanzando la caravana
¿V0;t?
V0≠0;V=0 [X110]
Esperando al trolebús
¿a;t?
V0=0;V≠0 [B250]
Paseo de un clásico
¿a;t?
V0≠0;V=0 [X112]
Impresionante frenada del Volvo
¿a;t? V0≠0;V≠0 [X113] Camión demorado por tránsito
d) Ejercicio que se resuelve con un sistema de 2 ecuaciones
relacionadas. En una de ellas se debe aplicar la resolvente de 2° grado para
obtener la variable tiempo. Conocido este valor se pasa a la siguiente ecuación
que tenía 2 incógnitas, una de ellas el tiempo, y se calcula la velocidad
final.
Este ejercicio también se puede resolver aplicando la
ecuación complementaria para calcular la velocidad final, y luego se calcula el
tiempo con una de las ecuaciones horarias originales.
¿V;t?
V0≠0;V≠0 [X111] Ambulancia
con emergencia
e) Ejercicio que se puede resolver aplicando las ecuaciones horarias como en todos los casos anteriores, pero ahora en dos etapas. Primero se resuelve por sustitución un sistema de 2 ecuaciones con 2 incógnitas, a raíz de lo cual queda planteado otro sistema de ecuaciones (como en el caso “d”). Se aplica la resolvente de 2° grado para obtener la variable tiempo. Conocido este valor se pasa a la siguiente ecuación que tenía 2 incógnitas, una de ellas el tiempo, y se calcula la velocidad inicial.
Este ejercicio también se puede resolver aplicando la
ecuación complementaria para obtener la velocidad inicial, y luego se calcula
el tiempo con una de las ecuaciones horarias originales.
¿V0;t? V0≠0;V≠0 [X118] Pesquero saliendo del puerto
No hay comentarios:
Publicar un comentario